Equations and parameters

From openpipeflow.org
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

$ \renewcommand{\vec}[1]{ {\bf #1} } \newcommand{\bnabla}{ \vec{\nabla} } \newcommand{\Rey}{Re} \def\vechat#1{ \hat{ \vec{#1} } } \def\mat#1{#1} $ (As implemented in openpipeflow.org. For a reminder of the code parameter names see Getting_started#parameters.)

Governing equations

Non-dimensionalisation / scales

The scales used are

  • $R$, the radius of the pipe.
  • $U_{cl}$, the centre-line velocity for laminar flow.
  • $R/U_{cl}$ for time.

In computational units,

  • the non-dimensional radius is 1 and
  • the non-dimensional laminar flow is $W(r)=1-r^2$.

Note that $R=D/2$, where $D$ is the diameter. When the bulk flow rate is fixed, so that the mean axial flow speed $U_b$ is constant, we have $U_{cl}=2U_b$.

For 'lab-units', based on $D$ and $U_b$,

  • 1 advection time unit $D/U_b$ is equivalent to 4 code time units $R/U_{cl}$,
  • the bulk velocity corresponds to $\frac{1}{2}$ in code units.

Table of unit conversions.

Dimensionless parameters

Reynolds number, fixed flux, $Re_m = 2 U_b R / \nu = DU_b / \nu$, where the kinematic viscosity $\nu = \mu / \rho$.

Reynolds number, fixed pressure, $Re = U_{cl} R / \nu$.

For fixed flux (constant flow rate), $U_{cl}=2\,U_b$ at all times. The Reynolds number $Re_m$ is more commonly defined in terms of the constant mean speed $U_b$.

For fixed pressure gradient, $U_b$ is a time-dependent quantity that depends on the flow pattern. We define the Reynolds number $Re$ in terms of the unique $U_{cl}$ for the given pressure gradient.

$1+\beta = Re / Re_m$ is an observed quantity. For fixed flux, $1+\beta=\langle\partial p/\partial z\rangle \,/\, (dP/dz)$, where $(dP/dz)$ is the laminar pressure gradient and $\langle\partial p/\partial z\rangle$ is the average pressure gradient observed. For fixed pressure, $1+\beta=U_{cl}/(2U_b)$, where $U_b$ is the observed bulk speed.

The 'wall-Reynolds number' $Re_\tau=u_\tau R/\nu$, where $u_\tau$ is the 'wall-velocity' [1], is given by $Re_\tau = (2\,Re_m\,(1+\beta))^\frac{1}{2}=(2\,Re)^\frac{1}{2}$.

Evolution equations

Fixed flux,

$ (\partial_{t} + \vec{u}\cdot\bnabla) \vec{u} = -\bnabla \hat{p} + \frac{4}{\Rey_m}\,(1+\beta)\vechat{z} + \frac{1}{\Rey_m}\bnabla^2 \vec{u} $ and $\bnabla\cdot\vec{u}=0$.

Fixed pressure

$ (\partial_{t} + \vec{u}\cdot\bnabla) \vec{u} = -\bnabla \hat{p} + \frac{4}{\Rey}\vechat{z} + \frac{1}{\Rey}\bnabla^2 \vec{u} $ and $\bnabla\cdot\vec{u}=0$.

Let $\vec{u}=W(r)\vechat{z}+\vec{u}'$. Using the scaling above, the laminar flow is $W(r) = 1-r^2$. The equation, in rotational form, for the evolution of the perturbation $\vec{u}'$ is then

$ (\partial_{t} - \frac{1}{\Rey_m}\bnabla^2)\,\vec{u}' = \vec{u}' \wedge (\bnabla \wedge\vec{u}') - \frac{\mathrm{d}W}{\mathrm{d}r}\,u'_r \vechat{z} - W\,\partial_{z}\vec{u}' + \frac{4\,\beta}{\Rey_m}\vechat{z} - \bnabla\hat{p}' \, . $

Boundary conditions

The no-slip boundary conditions are $\vec{u}=\vec{0}$ at the wall, $r=1$. There is no boundary condition explicitly on the pressure. Indirectly, the pressure must ensure that $\bnabla\cdot\vec{u}=0$ is satisfied everywhere, i.e. also on the boundary.

At the axis $r=0$, symmetry implies that functions are odd or even across the axis. For a Fourier mode with azimuthal index $m$, each mode is odd/even if $m$ is odd/even for the variables $u_z$ and $p$ (and other scalars). For $u_r$ and $u_\theta$, each mode is even/odd if $m$ is odd/even.

Decoupling the equations

The equations for $u_r$ and $u_\theta$ are coupled in the Laplacian. They can be separated in a Fourier decompositon by considering

$u_\pm = u_r \pm \mathrm{i} \, u_\theta,$

for which the $\pm$ are considered respectively. Original variables are easily recovered

$u_r = \frac{1}{2} ( u_+ + u_-), \qquad u_\theta = -\,\frac{\mathrm{i}}{2}(u_+ - u_- ) .$

Governing equations are then decoupled in the linear part and take the form

$\begin{eqnarray*} (\partial_{t} - \nabla^2_\pm)\, u_\pm & = & N_\pm - (\bnabla p)_\pm , \\ (\partial_{t} - \nabla^2 )\, u_z & = & N_z - (\bnabla p)_z ,\end{eqnarray*}$

where

$\nabla^2_\pm = \nabla^2 - \frac{1}{r^2} \pm \frac{2\,\mathrm{i}}{r^2}\partial_{\theta}$